EXERCISES FUCHSIAN DIFFERENTIAL EQUATIONS FALL 2022

Herwig HAUSER

5 Determine the initial forms and the local exponents of the Gaussian hypergeometric differential equation

$$
x(x-1) y^{\prime \prime}+[(a+b+1) x-c] y^{\prime}+a b y=0
$$

at all its singular points, $a, b, c \in \mathbb{Q}, c \notin \mathbb{Z}_{\leq 0}$. Don't forget to check at $x=\infty$. [van der Waall, p. 12].

6 Rewrite a second or third order differential equation $L y=0$ as a system $Y^{\prime}=A Y$ of first order equations. Try to express the local exponents of L at 0 in terms of the matrix A. Illustrate your findings in an example.

7 Let $r(x) \in \mathbb{C}(x)$ be a rational function and let $m \in \mathbb{N}$. Then $y(x)=\sqrt[m]{r(x)}$ is an algebraic function (i.e., algebraic over $\mathbb{C}(x)$).
(a) Compute the first few coefficients of the expansion of $y(x)$ for $r(x)=1+x$ and $m=3$.
(b) Find a linear differential equation $L y=0$ with polynomial coefficients with solution $y(x)$.
(c) Now forget about $y(x)$ and solve $L y=0$ "blindly".
(d) When is 0 a non-singular point of L ?
(e) In case that it is singular, do you expect it to be a "regular" singularity?

8 (a) Show that the first few coefficients of the hypergeometric series

$$
y(x)=\sum_{k=0}^{\infty} \frac{(30 k)!k!}{(15 k)!(10 k)!(6 k)!} x^{k}
$$

are integers.
(b)* All coefficients are integers. (The asterisque * signifies that this is more challenging).
(c)* Try to find a differential equation for $y(x)$.

Remark. This is a very famous example, studied already by Chebychev. See the paper of F. Rodriguez-Villegas "Integral ratios of factorials ..." for a detailed discussion.

